631 research outputs found

    Fullerol ionic fluids

    Full text link
    http://pubs.rsc.org/en/Content/ArticlePDF/2010/NR/C0NR00307G/2010-06-08?page=SearchWe report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine(R)). The ionic fluid was compared to a control synthesized by mixing the parially protonated from (sodium form) of hte fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine (R) (liquid-like) and the control (solid-like).This publication is based on work supported in part by Award No. KUS-C1-018-02 made by King Abdullah University of Science and Technology (KAUST)

    Processing of bistranded abasic DNA clusters in γ-irradiated human hematopoietic cells

    Get PDF
    Clustered DNA damages—two or more lesions on opposing strands and within one or two helical turns—are formed in cells by ionizing radiation or radiomimetic antitumordrugs. They are hypothesized to be difficult to repair, and thus are critical biological damages. Since individual abasic sites can be cytotoxic or mutagenic, abasicDNAclusters are likely to have significant cellular impact. Using a novel approach for distinguishing abasic clusters that are very closely spaced (putrescine cleavage) or less closely spaced (Nfo protein cleavage), we measured induction and processing of abasic clusters in 28SC human monocytes that were exposed to ionizing radiation. g-rays induced 1 double-strand break: 1.3 putrescine-detected abasic clusters: 0.8 Nfodetected abasic clusters. After irradiation, the 28SC cells rejoined double-strand breaks efficiently within 24 h. In contrast, in these cells, the levels of abasic clusters decreased very slowly over 14 days to background levels. In vitro repair experiments that used 28SC cell extracts further support the idea of slow processing of specific, closely spaced abasic clusters. Although some clusters were removed by active cellular repair, a substantial number was apparently decreased by ‘splitting’ during DNA replication and subsequent cell division. The existence of abasic clusters in 28SC monocytes, several days after irradiation suggests that they constitute persistent damages that could lead to mutation or cell killing. Originally published in Nucleic Acids Research 2004 Vol. 32, No. 18

    A general strategy for synthesis of metal oxide nanoparticles attached on carbon nanomaterials

    Get PDF
    We report a general strategy for synthesis of a large variety of metal oxide nanoparticles on different carbon nanomaterials (CNMs), including single-walled carbon nanotubes, multi-walled carbon nanotubes, and a few-layer graphene. The approach was based on the π-π interaction between CNMs and modified aromatic organic ligands, which acted as bridges connecting metal ions and CNMs. Our methods can be applicable for a large variety of metal ions, thus offering a great potential application

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review

    Anisotropic Charge Distribution and Anisotropic van der Waals Radius Leading to Intriguing Anisotropic Noncovalent Interactions

    Get PDF
    Although group (IV-VII) nonmetallic elements do not favor interacting with anionic species, there are counterexamples including the halogen bond. Such binding is known to be related to the charge deficiency because of the adjacent atom's electron withdrawing effect, which creates s/p-holes at the bond-ends. However, a completely opposite behavior is exhibited by N-2 and O-2, which have electrostatically positive/negative character around cylindrical-bond-surface/bond-ends. Inspired by this, here we elucidate the unusual features and origin of the anisotropic noncovalent interactions in the ground and excited states of the 2nd and 3rd row elements belonging to groups IV-VII. The anisotropy in charge distributions and van der Waals radii of atoms in such molecular systems are scrutinized. This provides an understanding of their unusual molecular configuration, binding and recognition modes involved in new types of molecular assembling and engineering. This work would lead to the design of intriguing molecular systems exploiting anisotropic noncovalent interactions.open

    PET Imaging of Soluble Yttrium-86-Labeled Carbon Nanotubes in Mice

    Get PDF
    The potential medical applications of nanomaterials are shaping the landscape of the nanobiotechnology field and driving it forward. A key factor in determining the suitability of these nanomaterials must be how they interface with biological systems. Single walled carbon nanotubes (CNT) are being investigated as platforms for the delivery of biological, radiological, and chemical payloads to target tissues. CNT are mechanically robust graphene cylinders comprised of sp(2)-bonded carbon atoms and possessing highly regular structures with defined periodicity. CNT exhibit unique mechanochemical properties that can be exploited for the development of novel drug delivery platforms. In order to evaluate the potential usefulness of this CNT scaffold, we undertook an imaging study to determine the tissue biodistribution and pharmacokinetics of prototypical DOTA-functionalized CNT labeled with yttrium-86 and indium-111 ((86)Y-CNT and (111)In-CNT, respectively) in a mouse model.The (86)Y-CNT construct was synthesized from amine-functionalized, water-soluble CNT by covalently attaching multiple copies of DOTA chelates and then radiolabeling with the positron-emitting metal-ion, yttrium-86. A gamma-emitting (111)In-CNT construct was similarly prepared and purified. The constructs were characterized spectroscopically, microscopically, and chromatographically. The whole-body distribution and clearance of yttrium-86 was characterized at 3 and 24 hours post-injection using positron emission tomography (PET). The yttrium-86 cleared the blood within 3 hours and distributed predominantly to the kidneys, liver, spleen and bone. Although the activity that accumulated in the kidney cleared with time, the whole-body clearance was slow. Differential uptake in these target tissues was observed following intravenous or intraperitoneal injection.The whole-body PET images indicated that the major sites of accumulation of activity resulting from the administration of (86)Y-CNT were the kidney, liver, spleen, and to a much less extent the bone. Blood clearance was rapid and could be beneficial in the use of short-lived radionuclides in diagnostic applications

    The methylation status of the embryonic limb skeletal progenitors determines their cell fate in chicken

    Get PDF
    Digits shape is sculpted by interdigital programmed cell death during limb development. Here, we show that DNA breakage in the periphery of 5-methylcytosine nuclei foci of interdigital precursors precedes cell death. These cells showed higher genome instability than the digit-forming precursors when exposed to X-ray irradiation or local bone morphogenetic protein (BMP) treatments. Regional but not global DNA methylation differences were found between both progenitors. DNA-Methyl-Transferases (DNMTs) including DNMT1, DNMT3B and, to a lesser extent, DNMT3A, exhibited well-defined expression patterns in regions destined to degenerate, as the interdigital tissue and the prospective joint regions. Dnmt3b functional experiments revealed an inverse regulation of cell death and cartilage differentiation, by transcriptional regulation of key genes including Sox9, Scleraxis, p21 and Bak1, via differential methylation of CpG islands across their promoters. Our findings point to a regulation of cell death versus chondrogenesis of limb skeletal precursors based on epigenetic mechanisms.We thank Prof. Miguel Lafarga for helpful comments and advice. We thank Dr Jose E Gomez-Arozamena for helping us with the irradiation experiments. We are grateful to Montse Fernandez Calderon, Susana Dawalibi, and Sonia Perez Mantecon, for excellent technical assistance. This work was supported by a Grant (BFU2017–84046-P) from the Spanish Science and Innovation Ministry to JAM. C.S.F is recipient of a FPI grant (BES-2015–074267)
    corecore